高级检索

Kitaev模型与拓扑量子相变

Kitaev model and topological quantum phase transitions

  • 摘要: 文章通过在一种准一维路径上引入自旋算符的约当-维格纳(Jordan-Wigner)变换,证明了Kitaev自旋模型完全等价于一个不含任何非物理自由度的自由Majorana费米子模型。通过对偶变换,进一步证明了这个系统中存在的量子相变可用非定域的拓扑序参量来描述;并且,这些非定域的拓扑序参量在对偶空间变成为定域的朗道类型的序参量。文章作者的工作揭示了传统的量子相变和拓扑量子相变的内在关系,扩展了朗道二级相变理论的适用范围。

     

    Abstract: Applying the Jordan-Wigner transformation to spin-1/2 operators on special quasi-one dimensional paths, we show that the two-dimensional Kitaev model can be exactly mapped to a free Majorana fermion model without any redundant degrees of freedom. Via duality transformation, it can be further shown that the quantum phase transitions of the Kitaev model are described by non-local topological order parameters, which become Landau type local order parameters in the dual space. A closed relationship between conventional and topological quantum phase transitions is revealed, and the validity of conventional Landau phase transition theory with spontaneous symmetry breaking and local order parameters is also extended.

     

/

返回文章
返回