高级检索

从分数量子霍尔效应到拓扑量子计算

From the fractional quantum Hall effect to topological quantum computation

  • 摘要: 分数量子霍尔效应系统是奇异的量子液体,其中的准粒子激发可以带分数电荷,甚至具有非阿贝尔的统计性质。理论研究表明,这些准粒子可以用来实现在硬件上可容错的量子计算,即拓扑量子计算。文章在介绍分数量子霍尔效应及其在拓扑量子计算中的潜在应用基础上,重点回顾了近五年来对填充因子为5/2的分数量子霍尔态中非阿贝尔准粒子的实验探测和部分相关理论诠释。

     

    Abstract: Fractional quantum Hall systems are exotic quantum liquids which support quasiparticle excitations with fractional charge and even non-Abelian statistics. Theoretical investigations have found that these quasiparticles can be exploited to realize topological quantum computation that is fault-tolerant on the hardware level. In this article we describe the fractional quantum Hall effect with emphasis on its potential applications in topological quantum computation. We focus on the recent progress in the experimental detection of non-Abelian quasiparticles in the 5/2-filling quantum Hall system, as well as on some relevant theoretical interpretations.

     

/

返回文章
返回